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Abstract

Numerical simulation of industrial multi-physics problems is still a challenge. It generally requires large

computational resources. It may involve complex code coupling techniques. It also relies on appropriate numerical

methods making data transfer possible, quick and accurate. In the framework of partitioned procedures, multi-physics

computations require the right choice of code coupling schemes, because several physical mechanisms are involved.

Numerical simulation of fluid–structure interactions is one of these issues. It is investigated in this paper. First the

computational process involving a code coupling procedure is presented. Then, applications and test cases involving

fluid structure interactions are investigated using several examples. A partitioned procedure involves several operators

ensuring code coupling. A special attention must be paid to energy conservation at the fluid–structure interface,

especially when it is moving and when strong non-linear behaviour occurs in both fluid and structure systems. In the

present work, several fluid–structure code-coupling schemes are compared and discussed in terms of stability and

energy conservation properties. The criteria are based on the evaluation of the energy that is numerically created at the

fluid–structure interface. This is achieved by considering the staggering process due to the time lag between the fluid and

structure solvers. Comparisons are made, and finally the article gives recommendations for creating a tool devoted to

coupled simulations of fluid structure interactions.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Flow-induced vibration problems occur in many industrial devices causing possible damage and even failure when

resonance or instability arises. For specific components like heat exchangers, semi-empirical correlations based on

experimental data have been identified under specific conditions. However, additional numerical studies are required

because of the complexity due to multi-physics phenomena involved. In the present paper the numerical simulation of

flow-induced vibrations in mechanical components involving tubes and tube bundles is investigated. The purpose is to

suggest a suitable numerical methodology and to apply it to academic configurations assumed to be relevant for testing

numerical algorithms.
e front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

A1, A2, A3, A4 constants (dimensionless)

An
s structure acceleration at time tn (m s�2)

Ca added damping (kg s�1)

Cs structure damping (kg s�1)

Dt current time step (s)

D tube diameter (m)

De external tube diameter (m)

e eccentricity (m)

En
f , DEn

f energy, energy variation associated to fluid

motion at time tn (Nm)

En
s , DEn

s energy, energy variation associated to struc-

ture motion at time tn (Nm)

f vibration frequency (Hz)

fc vibration frequency in the presence of

fluid–structure coupling (Hz)

fs structure vibration frequency in air (Hz)

Fn
f fluid force at time tn (kgm s�2)

Fn
s fluid force applied to the structure at time tn

(kgm s�2)

Ks structure stiffness (kg s�2)

On
f fluid domain (dimensionless)

L reference length in tube direction (m)

Ma added mass (kg)

Ms, M1, M2 structure mass (kg)

P longitudinal tube bundle pitch (m)

P/D tube bundle pitch ratio (dimensionless)

r fluid density (kgm�3)

St Stokes number (dimensionless)

t time (s)

V0, V1(0), V2(0) initial fluid velocity (m s�1)

Vn
m fluid mesh velocity at time tn (m s�1)

Vn
s structure velocity at time tn (m s�1)

X n
m fluid mesh displacement at time tn (m)

X n
s , X 1n

s , X 2n
s structure displacement at time tn (m)

X0 displacement magnitude (m)

a0, a1, b, g scheme constants (dimensionless)

ds, de logarithmic decrement in air, in water

(dimensionless)

e scheme convergence error threshold (dimen-

sionless)

m fluid dynamic viscosity (kgm�1 s�1)

n fluid cinematic viscosity (m2 s�1)

x vibration damping (dimensionless)
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As far as multi-physics problems are concerned, several physical problems have to be solved at the same time. This

can be done in several ways. In this paper the case of a fluid–structure interaction problem is considered. A first method

consists in solving the fluid and structure equations in a single system with a monolithic algorithm. This is a strong

coupling process ensuring the energy conservation of the full-coupled fluid–structure system. However, the approach is

often difficult to set up for industrial purposes as it requires significant modifications in fluid and structure solvers in

order to make them compatible from a numerical point of view. Moreover, for large industrial problems, a monolithic

method is time consuming and it requires a large memory allocation. These difficulties can be overcome by using a

partitioned procedure ensuring an external coupling solver of separated fluid and structure codes. This method is easier

to set up and it allows independent model development in both fluid and structure solvers. This is a time advancement

code coupling method and it is investigated in the present paper.

With this procedure, each time step is decomposed as follows. Firstly, the computation of fluid forces acting on the

structure is deduced from the fluid dynamic problem; secondly, the estimation of structure displacement and velocity

induced by these fluid forces are solved in the structure dynamic solver. Finally, the fluid domain is adjusted according

to the structure wall motion. This approach has the advantage of being very flexible from a numerical point of view. As

discussed in previous papers (Piperno, 1997), it is well known that the time order of this approach is generally lower

than the orders of both fluid and structure time integration schemes. Its stability limits are more restrictive than those of

fluid and structure solvers. For this reason several procedures have been developed to improve the efficiency of the

coupling process in terms of time-accuracy, stability and energy conservation at the fluid–structure interface.

The partitioned procedure may rely on several kinds of explicit or implicit time coupling schemes. With explicit

synchronous schemes, fluid and structure computations are staggered in time and, as a result, the energy conservation

may be violated. Explicit asynchronous schemes (Farhat et al., 1995; Farhat and Lesoinne, 1997; Piperno, 1997) and

implicit schemes (Hermann and Steindorf, 1999; Le Tallec and Mouro, 2001; Mani, 2003) have been introduced to

ensure better energy conservation. The first part of this paper is devoted to the presentation of several explicit and

implicit code coupling schemes. Their different properties are presented and results are compared to analytical

solutions.

In the second part, several studies are presented dealing with well-known test cases. Considering the time

advancement of the portioned procedure, the simplified configurations presented in this article are particularly

pertinent. Their modelling is based on beams, and no data projection is required at the fluid–structure interface for the

space data transfer between the solvers at each time step. Hence it is possible to use these configurations to focus on the

properties of the time code coupling schemes. They involve one- or two-dimensional test cases with one or several tubes
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in the presence of viscous or non-viscous fluid initially at rest in incompressible fields. Comparisons to available

experimental, numerical and analytical data are presented (Chen, 1987; Sinyavskii et al., 1980; Morand and Ohayon,

1995; Rogers et al., 1984; Weaver and Abd-Rabbo, 1985).

Finally, the article gives concluding remarks about the efficiency of the partitioned procedure. This sort of numerical

simulation of coupled problems opens up perspectives for use in other complex configurations.
2. Computational process

2.1. Partitioned procedure

2.1.1. Code coupling procedure

As previously mentioned, the fluid–structure code coupling procedure is based on a partitioned method. Each time

step is made of three steps: firstly, the computation of fluid forces acting on the structure; secondly, the resolution of

structure dynamic equations; finally, the fluid mesh updating. A fluid mesh displacement process like an Arbitrary

Lagrangian Eulerian (ALE) formulation is involved (Hughes et al., 1981; Souli and Zolesio, 2001). Fig. 1 illustrates the

numerical algorithm for coupling. In order to set up the time marching process, different integration schemes are

considered. At the moving fluid–structure interface, it is necessary not to produce or dissipate energy in order to avoid

numerical damping. A first-order explicit synchronous scheme is possible but it may produce or dissipate energy at the

coupling interface. Other time integration schemes can be used, like high-order staggered explicit schemes or implicit

schemes. They may be based on a step-by-step procedure using a fixed point or a Newton method to solve the

nonlinearity due to the interaction.
t > t final Exit

No

Yes

FLUID MESH 
Actualization of the 
fluid domain mesh 

Explicit
Method 

 t = t + dt 

Convergence 

Implicit 
Method 

Yes

No

FLUID  
Velocity, Pressure 

INTERFACE 
Force computation at fluid structure 

STRUCTURE 
Velocity, Displacement 

INITIALISATION STEP 
Velocity, Pressure, 

Displacement 

Fig. 1. Algorithm for the coupling of fluid and structure solvers with a partitioned procedure.
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2.1.2. Fluid–structure interface

As previlously shown by Farhat et al. (1995), the loss in time accuracy and numerical stability of the partitioned

procedure can lead to a violation of the energy conservation at the fluid–structure interface. The evaluation of the

energy created by the coupling is considered below (Farhat et al., 1995; Piperno, 1997; Bendjeddou, 2005; Longatte et

al., 2003; Piperno and Farhat, 2001). Both fluid and structure dynamics contribute to energy variation.

On one hand, the energy variation induced by the fluid computation at each time step can be expressed by the

following equation:

DEnþ1
f ¼ �T Fnþ1

f ðX
nþ1
m � X n

mÞ. (1)

T Fnþ1
f designates fluid forces acting on the structure estimated by the fluid solver at time tn+1. X n

m and X nþ1
m fluid are

domain boundary displacements or boundary mesh displacements at times tn and tn+1.

On the other hand, the structure displacement can be modelled by using a classical structural dynamic equation of the

form

MsA
n
s þ CsV

n
s þ KsX

n
s ¼ Fn

s , (2)

where Fn
s designates forces acting on the structure at time tn and An

s , Vn
s and X n

s are, respectively, structure acceleration,

velocity and displacement at time tn.

The following development illustrates the energy variation measured by the structure computation. Eq. (2) is solved

by using a Newmark algorithm for time integration:

MsA
nþ1
s þ CsV

nþ1
s þ KsX

nþ1
s ¼ Fnþ1

s . (3)

Terms are estimated at first order as follows:

Vnþ1
s ¼ Vn

s þ
dt

2
ðAn

s þ Anþ1
s Þ, (4)

X nþ1
s ¼ X n

s þ
Dt

2
ðVn

s þ Vnþ1
s Þ (5)

with

Vnþ1=2
s ¼

Vnþ1
s þ Vn

s

2
and X nþ1=2

s ¼
X nþ1

s þ X n
s

2
.

The energy of the structure is the sum of the kinetic and potential energies. Hence energy variation provided by

structural computation between times tn and tn+1 can be written as

DEnþ1
s ¼ Enþ1

s � En
s ¼

1
2
T ðVnþ1

s þ Vn
s ÞMsðV

nþ1
s � Vn

s Þ þ
1
2
T ðX nþ1

s þ X n
s ÞKsðX

nþ1
s � X n

s Þ

¼ DtT Vnþ1=2
s ðMsA

nþ1=2
s þ KsX

nþ1=2
s Þ ¼ dtT Vnþ1=2

s ðFnþ1=2
s � CsV

nþ1=2
s Þ. (6)

Finally one gets

DEnþ1
s ¼ T ðX nþ1

s � X n
s Þ

Fnþ1
s þ Fn

s

2
� dtT Vnþ1=2CsV

nþ1=2. (7)
2.1.3. Interface conditions

The energy variation induced by the second term of Eq. (7) is due to the structure damping Cs. It does not account for

energy variation generated by code-coupling. To reduce code-coupling errors and to ensure energy conservation at the

interface, the following relationship must be satisfied:

DEnþ1
s ¼ ðX nþ1

s � X n
s Þ

Fn
s þ Fnþ1

s

2
¼ �T Fn

f ðX
nþ1
m � X n

mÞ ¼ DEnþ1
f . (8)

Values of X n
s and Fn

f are, respectively, the structural displacements and the fluid forces at the interface estimated by the

codes. Code coupling schemes are based on this relation. The fluid mesh displacement X n
m and the force Fn

s must be

chosen to minimize this energy variation. In the following section, three explicit and implicit code coupling schemes are

presented.
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Fluid Step

 Structure Step

Structure Step

Fluid Step

Fluid Step

Structure Step

T(n-1) T(n) T(n+1) T(n+2)

T(n-1) T(n) T(n+1) T(n+2)

T(n) T(n+1) T(n+2) 

Tn(n+1/2) T(n+3/2) T(n+5/2) 

T(n-1) T(n) T(n+1) T(n+2) 

T(n-1) T(n) T(n+1) T(n+2) 

T(n-1/2)

Fig. 2. Time advancement procedure with (a) an explicit synchronous code coupling scheme, (b) an explicit asynchronous code

coupling scheme and (c) an implicit code coupling scheme.
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2.2. Time integration schemes

2.2.1. Explicit synchronous algorithm (ESA)

With an explicit scheme, the structural displacement X nþ1
s at time tn+1 is deduced from the fluid force computation

Ff
n at time tn+1 based on the fluid mesh position Xm at time tn+1 (Fig. 2(a)). A synchronous scheme gives a prediction of

the fluid–structure interface position at time tn+1 by using previous positions known at times tn and tn�1. The following

integration scheme is applied:

X nþ1
m ¼ X n

s þ a0 dt Vn
s þ a1 dtðVn

s � Vn�1
s Þ, (9)

where X n
s designates the structure displacement at time tn, X n

m the mesh displacement at time tn, Vn and Vn�1 the

structure velocity at times tn and tn�1. The constants a0 and a1 are specific scheme coefficients and they are chosen

according to the coupling process order.

Fluid forces Fnþ1
s acting on the structure are calculated, structure displacement X nþ1

s is deduced from the mechanical

equation. Constant a0 and a1 are chosen to get a high-order accuracy in the code coupling scheme. For a0 ¼ 1 and

a1 ¼ 0.5 a second-order code coupling scheme in time is obtained.

This algorithm was introduced by Farhat et al. (1995) and Farhat and Lesoinne (1997). It provides good results for

aero-elasticity problems, such as flow past panel flutter (Piperno et al., 1995; Piperno, 1997). However, from a

computational point of view, as far as boundary conditions are concerned, this choice makes it more difficult to satisfy

the geometric conservation law at the interface (Thomas and Lombard, 1979).

2.2.2. Explicit asynchronous algorithm (EAA)

With an asynchronous code-coupling scheme, fluid and structure problems are not solved at the same time. Fluid

computation is expressed at time tn+1/2 and structure computation at time tn+1, as depicted in Fig. 2(b).

The following prediction of first order is used for the fluid mesh displacement:

X nþ1=2
m ¼ X n

s þ
dt

2
Vn

s . (10)

Then the fluid forces are computed at time tn+1. This procedure ensures a better geometry mesh conservation. It also

guarantees the continuity of the displacement and the velocity at the fluid–structure interface according to the

Geometric Conservation Law (Thomas and Lombard, 1979). For example, by using the previous Newmark structure
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solver algorithm and the trapezoidal rule, the energy conservation property is deduced from

Vn
m ¼

X nþ1=2
m � X n�1=2

m

dt
¼

X n
s � X n�1

s

dt
þ

Vn
s � Vn�1

s

2
¼ Vn

s , (11)

where Vn
m is the mesh velocity at time tn.

2.2.3. Implicit algorithm (IA)

An implicit code coupling scheme is also possible by using a partitioned method at each time step, based on Newton’s

or fixed point algorithms (Hermann and Steindorf, 1999; Le Tallec and Mouro, 2001; Mani, 2003; Abouri et al., 2003).

This algorithm uses convergent explicit predictions of the coupled fluid structure system (Fig. 2(c)). Subcycling is

involved to get convergence for each subsystem. A criterion based on the fluid force or on the structure velocity is used

at each time step to stop the numerical subcycling process.

The computational procedure is described as follows. A reference state at time tn is defined for the fluid, for the

velocity, the pressure and the mesh, and also for the structure, for the displacement, the velocity and the acceleration.

For the computation of fluid and structure variables at step tn+1, each time step consists of the following subcycling

(referred to as k):
(i)
Fig
fluid force computation ðFnþ1
f Þ

0 in terms of Fn
f ,
(ii)
 prediction of structure displacement ðX nþ1
s Þ

k,
(iii)
 deformation of current geometry ðOnþ1
f Þ

k,
(iv)
 determination of new geometry ðOnþ1
f Þ

kþ1 and forces ðf nþ1
f Þ

kþ1,
(v)
 calculation of error estimator: � ¼ jðFnþ1
f Þ

kþ1
� ðFnþ1

f Þ
k
j=jðFnþ1

f Þ
0
j.
If the error estimator is lower than a critical value, the next time step tn+2 is incremented. Otherwise, the process

restarts from the initial state tn and the last velocity estimation ðX nþ1
s Þ

k is used for the next subcycling of this algorithm.

This reiterative process is based on a fixed point method and it is stable. It is of first-order and it can be improved by

using a higher-order algorithm like a Newton’s method (Abouri et al., 2003) or a conjugate gradient method (Daim et

al., 2002). In order to keep the code-coupling algorithm properties, sufficiently high-order time integration solvers must

be used for fluid and structure computations.

To illustrate the property of the previously mentioned explicit and implicit code coupling schemes (ESA, EAA, IA),

several test cases are investigated below. Scheme properties are discussed in terms of energy conservation for a

simplified test case (Bendjeddou, 2005) and for more complex configurations and in each case, comparisons to

analytical solutions are performed.

2.3. Scheme properties

2.3.1. Basic test case

In this part an one-dimensional test case is considered. It involves two structures, each of them being represented by a

mass point (referred to as M1 and M2). They are linked by a spring with a stiffness Ks and no damping (Fig. 3). The

system satisfies the mass spring equations

M1
d2X 1

s

dt2
þ KsX

1
s ¼ KsX

2
s ; M2

d2X 2
s

dt2
þ KsX

2
s ¼ KsX

1
s , (12,13)

where X1 and X2 designate the displacement of each structure.

This basic example consists of a mass spring system and gives a simplified representation of a fluid–structure

interaction system. Eq. (12) can be seen as the representation of a single structure problem where the right-hand side

corresponds to the loading exerted by fluid forces. Eq. (13) can be considered as the fluid problem providing an

estimation of the loading incorporated into Eq. (12).
. 3. One-dimensional test case involving two mass points linked by a spring with a stiffness and without structural damping.



ARTICLE IN PRESS
E. Longatte et al. / Journal of Fluids and Structures 25 (2009) 95–111 101
The following initial conditions on the initial structure displacements X1, X2 and velocities V1, V2 are imposed:

X 1ð0Þ ¼ X 0 ¼ �2X 2ð0Þ; V2ð0Þ ¼ V1ð0Þ ¼ 0, (14,15)

where X0 is a constant.

With the additional condition: M2 ¼M1/2, an analytical solution is given by

X 1
s ðtÞ ¼ X 0 cosð2pftÞ; X 2

s ðtÞ ¼ �2X 1
s ðtÞ, (16,17)

where 2pf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ks=M1

p
designates the system circular frequency and X0 is the displacement magnitude.

Time step sensitivity analysis of this mass spring system has been carried out to estimate energy conservation and

numerical stability of coupling schemes. A Newmark method is used for time integration in order to solve each

equation. Since both models have only one degree of freedom, each equation is obviously solved implicitly. Different

time steps have been used to compare the three time integration schemes previously mentioned. In Fig. 4, the relative

error on the energy of the system defined by (E(t)�E0)/E0 is plotted. E0 and E(t) are defined by

E0 ¼
1
2
KsðX 1ð0Þ � X 2ð0ÞÞ

2, (18)

EðtÞ ¼ 1
2
KsðX 1ðtÞ � X 2ðtÞÞ

2
þ 1

2
M1V1ðtÞ

2
þ 1

2
M2V2ðtÞ

2. (19)

As expected, the implicit time integration scheme satisfies better the total energy conservation than the two explicit

methods to be tested. The violation of the energy conservation for the two explicit methods, ESA and EAA, is due to

the explicit coupled computation of Eqs. (12) and (13). At each time step, both equations are implicitly solved by using
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Fig. 4. Comparison of the energy relative error for: (a) dt ¼ 10�3 s, (b) dt ¼ 10�4 s, (c) dt ¼ 10�5 s; , with implicit scheme; ,

explicit asynchronous scheme; —, explicit synchronous scheme.
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an acceleration algorithm, called a-form of Newmark method (with parameters b ¼ 1/2 and g ¼ 1/2), where a

prediction step for the computation of X̄
nþ1
i and V̄

nþ1
i (with i ¼ 1 or 2) is followed by a correction step for An+1, Xn+1

and Vn+1. For the prediction step, this leads to

X̄
nþ1
i ¼ X n

i þ dt Vn
i þ

1
2
dt2ð1� 2bÞAn

i , (20)

V̄
nþ1
i ¼ Vn

i þ ð1� gÞ dt An
i , (21)

where dt designates the current time step. In the present work, the same time step is used for the two systems. For each

equation i, the following system is solved implicitly:

ðMi þ b dt2 KsÞA
nþ1
i ¼ Fnþ1

i � KsX̄
nþ1
i . (22)

Then the correction step is

X nþ1
i ¼ X̄

nþ1
i þ b dt2 Anþ1

i , (23)

Vnþ1
i ¼ V̄

nþ1
i þ g dt Anþ1

i . (24)

This basic example illustrates the energy dissipation produced by an explicit direct method. Total energy error is

plotted for different time steps in Fig. 4. Energy dissipation decreases with smaller time steps. With an explicit

asynchronous scheme, the energy error is 30–40% smaller than the energy error generated by an explicit synchronous

scheme.
2.3.2. Interface conditions

In order to study the energy conservation at the interface, the variation of fluid and structure energy respectively DEf

and DEs can be estimated under the assumption that the first equation of system (Eq. (12)) provides the structure

displacement while the second one (Eq. (13)) gives the fluid forces at the coupling interface. Thus, the fluid forces acting

on the structures represent, respectively, Fn
f ¼ KsX

n
1 and Fn

s ¼ KsX
n
2. If an explicit code coupling procedure is involved,

the conditions to minimize the numerical energy are deduced from Eq. (8). These extrapolations are not necessary with

an implicit code coupling scheme because fluid forces are predicted by successive subcycling iterations in the fluid

computation.
2.3.3. Energy conservation

In what follows, a comparison is made of the energy conservation properties of ESA, EAA and IA by using the

previously mentioned one-dimensional test case. Results in terms of force and displacement, frequency and damping are

deduced from suitable post-processing methods.

As far as code coupling is concerned, specific attention must be paid to energy conservation at the coupling interface.

The mass spring problem is solved by using different algorithms. It is shown that fluid and structure energy variations

are reduced by using scheme ESA or scheme IA, as illustrated in Fig. 4. The energy conservation properties of the three

methods are compared. Numerical damping is lower with the implicit algorithm which has the advantage of preserving

equilibrium between the fluid and structure at each time step. Comparing the two explicit methods, the EAA features a

better energy conservation than the ESA. This improvement produced by a staggered advancement in time has already

been pointed out (Farhat and Lesoinne, 1997). Different time steps have been tested for this specific simple problem

involving a mass-spring system. Energy dissipation is limited with the explicit synchronous algorithm and the two

explicit methods converge to the solution given by the implicit method.

Furthermore errors between analytical and numerical solutions are compared for the three code coupling schemes

ESA, EAA and IA. Schemes ESA and IA provide the best results and the error increases slowly in time. The explicit

synchronous scheme cannot satisfy in the same time velocity and displacement continuity and it leads to numerical

errors polluting the numerical simulation. One can conclude that numerical damping created by implicit or explicit

asynchronous code coupling schemes is lower than damping generated by an explicit synchronous scheme. Besides a

comparison with a fully implicit monolithic procedure by using a fluid–structure finite element code is achieved in

Table 1. The two masses and the spring are modelled as two discrete finite elements and a linear element. As shown for

the partitioned implicit code coupling scheme, the monolithic procedure provides good results in terms of numerical

damping. A fully implicit monolithic process involves a strong coupling solver.
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Table 1

Comparison of analytical and numerical solutions obtained for explicit synchronous, asynchronous and implicit schemes, with

structure mass M2 ¼
1
2

M1, structure stiffness Ks ¼ K1 ¼ K2 and no damping, for time step dt ¼ 10�5 s

Basic test case Error on frequency Error on damping

Explicit synchronous 7.1� 10�5 8.7� 10�5

Explicit asynchronous 5.4� 10�5 6.9� 10�6

Implicit 1.9� 10�5 9.0� 10�12

Analytical solution 0.0 0.0
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3. Test simulation and validation

In the previous section, methods for code coupling have been discussed and standard schemes have been compared in

terms of accuracy and stability at the interface where the coupling is involved. In the present part, these methods are

tested on realistic test cases in order to evaluate them when applied to interesting configurations involving tubes and

tube bundles in the presence of quiescent fluid or flow. Numerical solutions are compared to available experimental or

analytical data.

3.1. Numerical versus analytical solutions

3.1.1. Fluid force identification

Numerical simulation of structure flow-induced vibrations requires fluid force identification. In this section, methods

for identification of fluid structure forces are described. In the framework of classical formulations, the structure

dynamic equation in a fluid at rest can be written as follows:

MsAs þ CsVs þ KsX s ¼ F ¼ Fc þ Ft ¼ �MaAs � CaVs þ Ft. (25)

In this expression, Ma and Ca designate, respectively, mass and damping added by the presence of the fluid around the

structure. The fluid force referred to as Fc ¼ �MaAs�CaVs corresponds to the fluid–structure force generated by the

coupling between fluid and structure motions at the fluid structure interface. The remaining term, Ft, designates fluid

forces independent of the structure motion. For laminar flows, this term is assumed to be zero.

Numerical methods for identification of fluid–structure parameters Ma and Ca are presented below and rely on

convenient data processing. Estimation of added mass and damping in fluid at rest in specific configurations is discussed

below. First the fluid forces identification method is described. Then results of studies carried out on two test cases are

presented, finally conclusions on the performance of the methodology are discussed. In each case, a threshold of

convergence has been chosen, but one could improve the results with a convergence in mesh or by using a Richardson

convergence procedure (Richardson, 1910).

3.1.2. Inviscid fluid test case

The identification of fluid–structure forces induced by a rigid, undamped moving tube surrounded by an inviscid fluid

at rest and a fixed tube is investigated in the present part. The configuration is depicted in Fig. 5.

The purpose is to focus on the global energy conservation of the fully coupled fluid–structure system. The numerical

model is presented and finally both analytical and numerical results are compared (Bendjeddou, 2005). Fluid and

structure characteristics are presented in Table 1. In this problem, the fluid is considered at rest which makes the fluid

motion initialization possible. One considers an initial internal tube displacement with an amplitude X0 ¼ 10�2mm.

Analytical added mass and damping for this test case are deduced from Eqs. (33) and (34). All configuration parameters

are reported in Table 2. The expected displacement for a non-damped structure in an inviscid fluid is expressed as

follows:

X s ¼ X 0 cosð2pf ctÞ: (26)

The computation is discussed below. The analytical expression is detailed in the appendix.

The tube displacement satisfies the mechanical Eq. (25). In this case, added parameters Ma and Ca are added mass

and damping induced by fluid at rest. A fluid–structure code coupling is used to get these coefficients. A second-order

time integration solver, a Newmark algorithm for the structure and a Crank–Nicholson algorithm for the fluid are

involved. The three code-coupling explicit synchronous, explicit asynchronous and implicit schemes are tested. To get
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Table 2

Table for fluid and structure properties for the inviscid test case

Non viscous fluid test case parameters Fluid Structure

Density 1000 kgm�3

Dynamic viscosity 0

Internal tube diameter 2mm

External tube diameter 2.5–5mm

Reference length 1mm

Mass 5.96� 10�4 kg

Stokes number N

Damping 0%

Frequency 119.36Hz

Table 3

Comparison of analytical and numerical results with explicit synchronous, explicit asynchronous, implicit partitioned and fully implicit

coupling schemes with a time step: dt ¼ 10�5 s for the inviscid fluid test case with parameters of Table 2

Inviscid fluid test case Frequency fc (Hz) Damping x (%)

Explicit synchronous 118.92 0.0331

Explicit asynchronous 118.92 0.0228

Implicit 118.92 0.0032

Fully implicit 119.02 0.0018

Analytical solution 118.93 0

Fig. 5. Configuration of the test case involving two coaxial tubes separated by a fluid initially at rest.
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accurate results, second-order time integration solvers, a Newmark one for the structure and a Crank–Nicholson one

for the fluid are used. Moreover, in the Crank–Nicholson scheme, the pressure and velocity field computations are

staggered in time, pressure is expressed at time tn+1/2 and velocity at time tn+1. A linear extrapolation of the pressure at

time tn+1 is performed in order to compute fluid force acting on the tube,

Fnþ1 ¼ 3
2
Fnþ1=2 � 1

2
Fn�1=2. (27)

Numerical simulation introduces an artificial damping and the tube displacement satisfies the following equation:

X s ¼ X 0 cosð2p ~f ctÞ e�
~xt, (28)

where ~f c and
~x designates, respectively, the numerical frequency and damping to be identified. Errors in tube frequency

fc and damping x obtained with the three code-coupling schemes are given in Table 3. As in the one-dimensional test
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case, the numerical damping is reduced with the implicit and explicit asynchronous schemes and each scheme gives a

good estimation of tube frequency for fluid at rest.
3.1.3. Viscous fluid test case

Fluid–structure forces induced by a rigid moving tube surrounded by a viscous fluid initially at rest and a fixed tube

are considered (Fig. 5). The configuration parameters are reported in Table 2, except for the Stokes number and the

dynamic viscosity. To test several Stokes numbers, one acts on the dynamic viscosity value. It is chosen to be very small

for St ¼N. This procedure makes it possible to keep the same solver for inviscid and viscous fluid, a non-zero value of

viscosity being necessary to overcome a computational overflow situation. The tube displacement satisfies the classical

mechanical Eq. (25). The numerical fluid–structure coupling method introduces a coupling between fluid and structure

computations. From an analytical point of view, results can be compared to those obtained with a similar

corresponding method. This method requires initial conditions on displacement, velocity and force. Here initial

structure displacement X0 is chosen to start structure displacement with a fluid initially at rest. The reference analytical

solution is given in the appendix.

First, numerical displacement obtained with the three code coupling schemes by using the same time step and the

same fluid mesh are compared. Table 4 shows that numerical damping introduced by coupling is reduced by using an

explicit asynchronous or an implicit code coupling scheme. Errors between numerical and analytical solutions deduced

from Eqs. (31) and (32) are reported.

Convergence in time and space for the explicit asynchronous code coupling scheme have been performed. Several

meshes with different boundary layer refinements have been used for space convergence. Example of meshes are

illustrated in Fig. 6. Results of time convergence tests are depicted in Table 5. Numerical results are in good agreement

with analytical solution with less than 5% error. Then the influence of the initial displacement and higher Stokes

number on fluid–structure coefficients is pointed out. For all computations, the initial tube displacement is small. It is

chosen so that the flow remains laminar. Table 6 shows that there is no significant effect of the initial amplitude on

numerical results. The effect is less then 1%. Finally the effect of viscosity is measured. Numerical results for small and

large Stokes numbers are in good agreement with analytical solutions (Table 7).
Table 4

Comparison of different code coupling scheme explicit synchronous, explicit asynchronous and implicit schemes with a 896 cells mesh

and a dt ¼ 5� 10�4 s time step for the viscous fluid test case

Viscous fluid test case Added mass Ma Added damping Ca

Explicit synchronous 1.22 1266.63

Explicit asynchronous 1.22 759.32

Implicit 1.20 503.69

Analytical solution 1.18 497.20

Fig. 6. Examples of meshes used to simulate the coaxial tube test case: (a) coarse (896 cells), (b) middle (3712 cells) and (c) fine meshes

(16 048 cells).
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Table 6

Influence of initial tube displacement X0 expressed in percent of tube diameter on fluid–structure coefficient with an asynchronous code

coupling scheme with a time step dt ¼ 5� 10�5 s and a 3712 cell mesh for the viscous fluid test case

Initial amplitude X0/D (%) 5 1 0.1

Added mass Ma 1.19 1.18 1.18

Added damping Ca 517.09 517.85 518.53

Table 7

Comparison of analytical and numerical results for the viscous fluid test case for two Stokes number values: St ¼ 800 (top) and

St ¼ 14 036 (bottom)

Analytical (�) Numerical (�)

Stokes number St ¼ 800

Added mass Ma 1.1790 1.1868

Added damping Ca 497.20 501.10

Stokes number St ¼ 14 036

Added mass Ma 1.1044 1.1069

Added damping Ca 1989.60 2039.21

Table 5

Time convergence with an asynchronous explicit scheme on a 3712 cells mesh for the viscous fluid test case

Time step (s) 5� 10�4 5� 10�5 2.5� 10�5 1.25� 10�5

Added mass Ma 1.19 1.19 1.18 1.18

Added damping Ca 738.83 513.42 500.99 497.60
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3.2. Weak versus strong coupling methods

The next part is devoted to the validation of the fluid-structure coupling tool by using different test cases. The explicit

asynchronous scheme is used.

3.2.1. Concentric tubes

Fluid–structure forces induced by a rigid moving tube surrounded by a viscous fluid at rest and a fixed tube is

modelled.

A complete analytical and experimental study of this configuration is considered (Chen et al., 1976; Chen, 1987; Yeh

and Chen, 1978). Analytical estimations of added mass and viscous damping coefficient are available. The following

notations are introduced: D and De designate, respectively, the moving and the non-moving tube diameters. Different

tube diameter ratio values are studied: De/D ¼ 1.2, 2.5, 4, 10; and in each case, different Stokes number values St are

considered: St ¼ 10, 100, 5000, N. A space and a time convergence has been achieved. Fixed cells in the tube reference

are introduced in the vicinity of the tube in order to avoid near-wall local mesh distortion. Dimensionless added mass

and viscous damping estimated numerically are compared to available analytical values in Fig. 7 for several diameter

ratios and Stokes numbers. Numerical results are in good agreement with expected solutions and the tube in fluid at rest

features the expected behaviour. For Stokes number St ¼ 5000, error on the dimensionless parameters are reported in

Table 8. One gets an error smaller than 5% between numerical solution and available analytical data (Sinyavskii et al.,

1980).

3.2.2. Eccentric tubes

In this test case, a tube diameter ratio De/D ¼ 2 configuration is considered and several cylinder eccentricity values

are tested by using the values of e ¼ 0, 0.3, 0.6. In these simulations, the Reynolds number is imposed at Rk ¼ 2pfD2/

n ¼ 50. The dynamic viscosity n is chosen in order to satisfy reasonable tube frequency value.
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Fig. 7. Evolution of dimensionless added mass and viscous damping coefficients for concentric tubes in terms of diameter ratio and

Stokes numbers. (a) Dimensionless added mass, (b) dimensionless viscous damping for viscous fluid: –’–, St ¼ 10; � � �m � � � ,

St ¼ 100; � � �K � � � , St ¼ 5000; - - -m- - -, for inviscid fluid (infinite Stokes number). For St ¼ 5000: comparison to available

analytical solution (–’– line).

Table 8

Error on dimensionless added mass and viscous damping for concentric tube test case with D0/D ¼ 4 and St ¼ 5000

Relative error (%) Added mass Viscous damping

Explicit asynchronous 6.65 3.57
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In what follows the numerical results obtained with the partitioned procedure are compared to those obtained with

an implicit monolithic procedure (Yang and Moran, 1979). The monolithic procedure relies on a finite element method

for both fluid and structure computations by using a strong coupling formulation.

An example of mesh used with the partitioned procedure is shown in Fig. 8. Dimensionless added mass and viscous

damping are plotted in Fig. 9 for several eccentricity values. Numerical results obtained with the partitioned procedure

and with the monolithic one are compared; they are in good agreement. The partitioned scheme provides good results in

terms of numerical damping like a fully implicit solver. The mechanical energy of the whole fluid–structure system is

expressed for these different code coupling schemes. The mechanical energy is conserved for a inviscid fluid and a non-

damped structure. The implicit code coupling scheme ensures better energy conservation.
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Fig. 8. Example of mesh for the test case involving coaxial tubes with an eccentricity e ¼ 0.3.
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Fig. 9. Evolution of dimensionless added mass and viscous damping coefficients in terms of eccentricity for eccentric tubes.

Comparison between numerical solutions obtained with a partitioned procedure and with a monolithic coupling algorithm (Chen,

1987). –’–, partitioned procedure solutions –m–, monolithic procedure solutions.
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3.3. Numerical versus experimental results

3.3.1. Tube bundles test case

A tube bundle configuration is studied and numerical identification of added mass and damping in fluid at rest for a

single tube (Fig. 10) moving in a fixed tube array is investigated. The configuration is an in line square array with a pitch

ratio diameter P/D ¼ 1.5 (Weaver and Abd-Rabbo, 1985). Numerical results obtained with the partitioned procedure

are compared to available experimental results (Weaver and Abd-Rabbo, 1985). The test case characteristics are given

below. The structure frequency in air is fs ¼ 25.5Hz70.2Hz, the Stokes number is: St ¼ fsD
2/n ¼ 16 000 and the

structure damping values in air and in still water are given by the following logarithmic decrements: ds ¼ 0.01470.001

and de ¼ 0.03770.004.

One fixes the structure frequency and chooses a mass to find the structure stiffness, then selects the structure damping

in order to get a logarithmic decrease in air.
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Fig. 10. Configuration for the test case involving a tube bundle with a pitch ratio of P/D ¼ 1.5 (Weaver and Abd-Rabbo, 1985).

Table 9

Error on frequency and added damping estimated numerically for the tube array test case with pitch ratio P/D ¼ 1.5

Relative error (%) Frequency Viscous damping

9-tube model 3.89 6.16

12-tube model 1.23 3.64
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In what follows the added damping estimated numerically and logarithmic decrement in water for measuring the

added damping are compared. Fluid–structure coefficients depend only on the Stokes number and tube confinement.

Structure mass and stiffness in air could be chosen arbitrarily and have to satisfy the given structure frequency in air.

In this computation, the fluid is Newtonian and the flow is two-dimensional and incompressible. Periodic boundary

conditions are used on elementary 9-tubes and 12-tubes computational cells in order to simulate an infinite tube bundle.

The explicit asynchronous code coupling scheme is used. By using an empirical law (Rogers et al., 1984), one can find

the added mass and damping. This law allows to make the correspondence between a tube bundle (with a pitch ratio

diameter given) and two coaxial tubes (with a diameter ratio) for the fluid-structure coefficients.

These values, associated to the structure mass and damping, will enable us to find the analytical logarithmic

decrement in water dtheo, and the analytical frequency ftheo, found by using the structure frequency. The error of

different numerical results are compared in Table 9. As an indication, one can use the experimental results for the added

damping d ¼ 0.03770.004.

Numerical results are in good agreement with experimental measurements, with an error smaller than 10%.
4. Conclusion

Nowadays, code-coupling methods are possible for solving complex fluid–structure interaction problems. This

technique features great flexibility and modularity: a fluid dynamics code and a structural dynamics code can be

coupled by using an efficient coupling interface. This method takes advantage of the parallel process involved within

each analysis code. This allows both parts of the fluid–structure interaction problem to be solved in the best possible

way, for example a Finite Volume Method for the fluid dynamics and a Finite Element Method for the structure.
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Depending on the generality of the two codes, complex flows and structure motions can be considered

and their coupling successfully modelled. The only requirement consists in creating routines to exchange suitable

information between the two solvers. Unfortunately, due to the explicit nature of this coupling, convergence problems

may occur. Consequently, there is a restriction on the time step even if implicit time integration schemes are used by

both solvers.

The coupled fluid–structure or monolithic algorithm requires reformulation of the equations and it implies

restrictions on the choice of the numerical methods to be used. However, as far as time advancement is concerned,

because of the simultaneous solution of both parts of the fluid–structure problem, there is no approximation error due

to data transfer at the interface, and no time-step restriction for stability. Therefore the monolithic method can be used

with large time steps, but it is more difficult to implement than the partitioned procedure. The linear system of the

coupled problem may have a high conditioning parameter number if fluid and structure dynamics are solved in different

scales, which may create a wide spectrum in the coupled linear system. The convergence properties of the coupling

method can be improved by exchanging the data at the interface between the fluid and structure several times per time

step, which is the case of the implicit method presented in this paper. With regard to stability condition, the implicit

method can be used with larger time steps. This is not the case for the two explicit methods considered in this article.

The implicit method is widely used and it has been shown to be very efficient for industrial applications. With regard to

the energy conservation at the interface, the implicit method satisfies better the required conditions. For further

validation of the method, more applications to fluid–structure problems must be investigated. Especially in the

framework of industrial configurations involving complex flows around vibrating tubes, this work is particularly

valuable.
Appendix A. Analytical expression for the coaxial tube test case

As far as tube and tube bundle vibrations are concerned, analytical expressions of fluid–structure parameters—the

added mass and damping Ma and Ca as formulated in Eq. (25)—can be based on the theory and assumptions described

by Chen (1987). Sinyavskii et al. (1980) developed the following equivalent expression for Ma and Ca:

Ma ¼ rp
D2
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where r, m, n, D, L designate, respectively, fluid density, fluid viscosities, tube diameter and length in the tube direction.

For high Stokes number, the latest formula of added mass and viscous damping (29) and (30) are equivalent to the

following expressions:

Ma ¼ rD2L
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if the following condition is satisfied:

St ¼ pfD2=2nb1.

This formulation has been developed (Sinyavskii et al., 1980; Chen, 1987) for high Stokes numbers.

When the fluid tends to be inviscid (with dynamic viscosity m ¼ 0), the associated Stokes number satisfies

St ¼ ðrfD2=mÞ ¼ 1, and the previous expressions simplify to

Ma ’ rD2L
p
4

½1þ ðD=DeÞ
2
�

½1� ðD=DeÞ
2
�

 !
; Ca ’ 0. (33,34)
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